



# WT01C202-AI-S1/S1U

## Technical Specification



**Version 2.2**



## Disclaimer and Copyright Notice

Information in this document, including the URL addresses for reference, is subject to change without notice.

This document is provided "as is" without warranty of any kind, including any warranty of merchantability, fitness for a particular purpose, or non-infringement, and any warranty that any proposal, specification, or sample is referred to elsewhere. This document disclaims all liability, including liability for infringement of any patent, arising out of the use of the information in this document. This document does not grant any license, express or implied, by estoppel or otherwise, to use any intellectual property.

The Wi-Fi Alliance member logo is owned by the Wi-Fi Alliance.

All trade names, trademarks and registered trademarks mentioned herein are the property of their respective owners and are hereby acknowledged.

## Notice

The content of this manual is subject to change due to product version upgrade or other reasons. WIRELESS-TAG Technology Co.,limited reserves the right to modify the contents of this manual without any notice or prompting. Ltd. makes every effort to provide accurate information in this manual, but WIRELESS-TAG Technology Co.,limited does not ensure that the contents of the manual are completely free of errors, and all statements, information and recommendations in this manual do not constitute any express or implied warranty.



## Revision History

| Version | Date      | Developed/changed content       | Creator/<br>Modifier | Auditor |
|---------|-----------|---------------------------------|----------------------|---------|
| V1.0    | 2025-1-10 | First creation                  | Lai                  | Louie   |
| V2.0    | 2025-2-24 | Modify the specification style  | Lai                  | Louie   |
| V2.1    | 2025-3-28 | Increase power consumption data | Lai                  | Louie   |
| V2.2    | 2025-8-28 | Modify pin definition           | Lai                  | Louie   |
|         |           |                                 |                      |         |



## Contents

|                                                  |    |
|--------------------------------------------------|----|
| 1. Overview . . . . .                            | 5  |
| 1.1. Products Introduction . . . . .             | 5  |
| 1.2. Product Features . . . . .                  | 6  |
| 1.3. Product Pictures . . . . .                  | 6  |
| 1.4. Application Scenarios . . . . .             | 7  |
| 2. Product Specification . . . . .               | 8  |
| 2.1. functional block diagram . . . . .          | 8  |
| 2.2. Hardware parameters . . . . .               | 8  |
| 2.3. Functional parameters . . . . .             | 9  |
| 3. Pin Definitions . . . . .                     | 10 |
| 3.1. Pin Layout . . . . .                        | 10 |
| 3.2. Pin Description . . . . .                   | 10 |
| 3.3. Startup Item Configuration . . . . .        | 12 |
| 3.3.1. Strapping Pins . . . . .                  | 12 |
| 3.3.2. Chip startup mode control . . . . .       | 13 |
| 3.4. Interface description . . . . .             | 14 |
| 3.4.1. Enable interface . . . . .                | 14 |
| 3.4.2. Serial port interface . . . . .           | 14 |
| 4. Electrical Characteristics . . . . .          | 17 |
| 4.1. Absolute maximum limit value . . . . .      | 17 |
| 4.2. Recommended working conditions . . . . .    | 17 |
| 4.3. Recommended working conditions . . . . .    | 17 |
| 4.3.1. WIFI power consumption . . . . .          | 17 |
| 4.3.2. Bluetooth(LE) power consumption . . . . . | 18 |
| 5. Module Schematic . . . . .                    | 19 |
| 6. Module Size and Packaging . . . . .           | 20 |
| 7. Storage Condition . . . . .                   | 21 |
| 8. Reflow Soldering Curve . . . . .              | 21 |
| 9. Contact Us . . . . .                          | 21 |

# 1. Overview

## 1.1. Products Introduction

The WT01C202-AI-S1 series module (hereinafter referred to as "WT01C202-AI-S1") is an intelligent voice AI module designed based on the ESP8684H4 of Espressif ESP32-C2 series chips, launched by Wireless-tag. It supports 2.4 GHz Wi-Fi, Bluetooth LE v5.0, local voice control, and antenna forms that support board-level PCBs, antennas, or I-PEX (3rd generation) RF coaxial connectors.

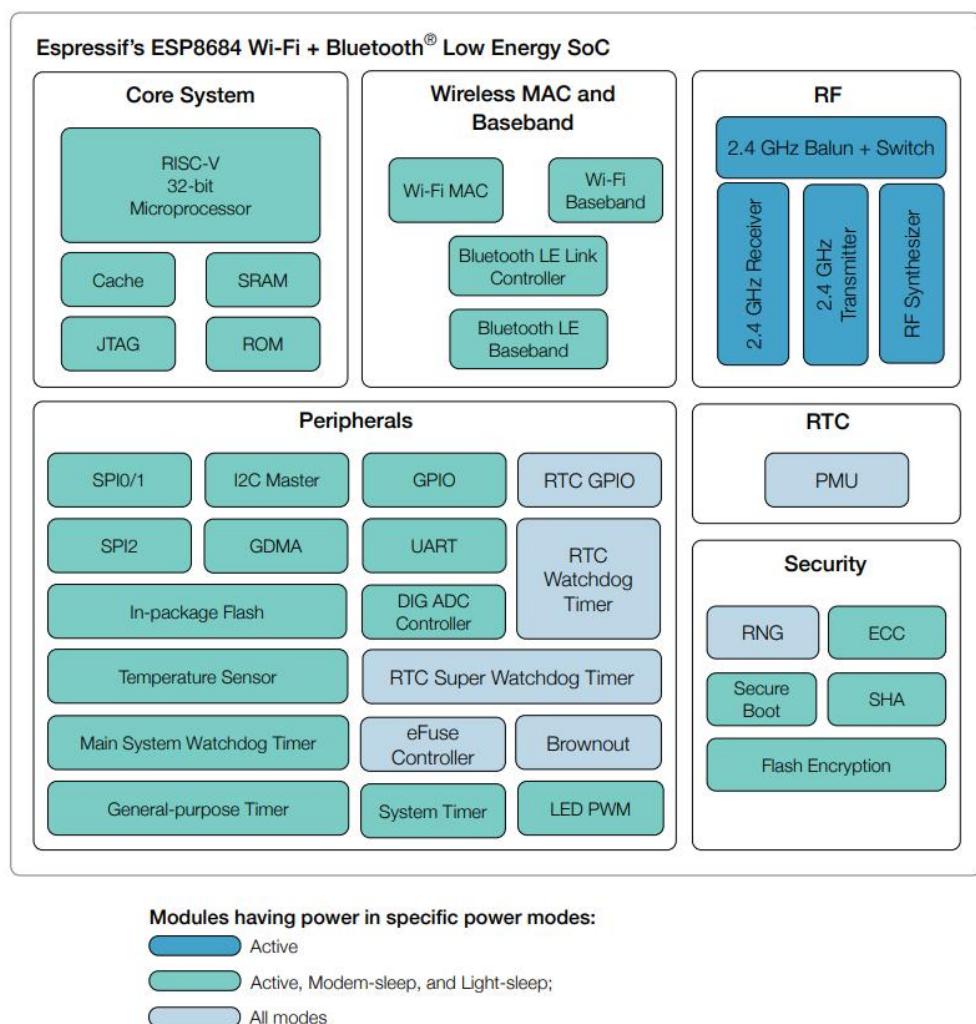



Figure 1: Main Chip Architecture Diagram

There are two antenna forms for the WT01C202 - AI-S1/S1U series modules. For more information, please refer to the following table.

#### WT01C202-AI-S1/S1U Series Model Number Comparison

| Purchase Model     | Flash in Package | Ambient temperature (°C) | Module Size (mm) | Antenna version |
|--------------------|------------------|--------------------------|------------------|-----------------|
| WT01C202-AI-S1-N4  | 4 MB             | -40 to 85                | 36.20*18.00*3.00 | PCB             |
| WT01C202-AI-S1U-N4 | 4 MB             | -40 to 85                | 36.20*18.00*3.00 | IPEX            |

## 1.2. Product Features

- Supports 2.4G Wi-Fi + BLE 5.0
- Small module package size and high integration
- Complete product certification (CE, FCC, SRRC, RoHS, Reach)
- Complete development materials, open source
- Voice print recognition
- Offline voice

### 1.3. Product Pictures



**Figure 2: WT01C202-AI-S1 (front)**



**Figure 3: WT01C202-AI-S1 (back)**



**Figure 4: WT01C202-AI-S1U (front)**



**Figure 5: WT01C202-AI-S1U(back)**

## 1.4. Application Scenarios

- AI toy
- IP toys
- AI Cultural and Creative Industries
- Robot
- Smart home
- Smart lighting

## 2. Product Specification

### 2.1. functional block diagram

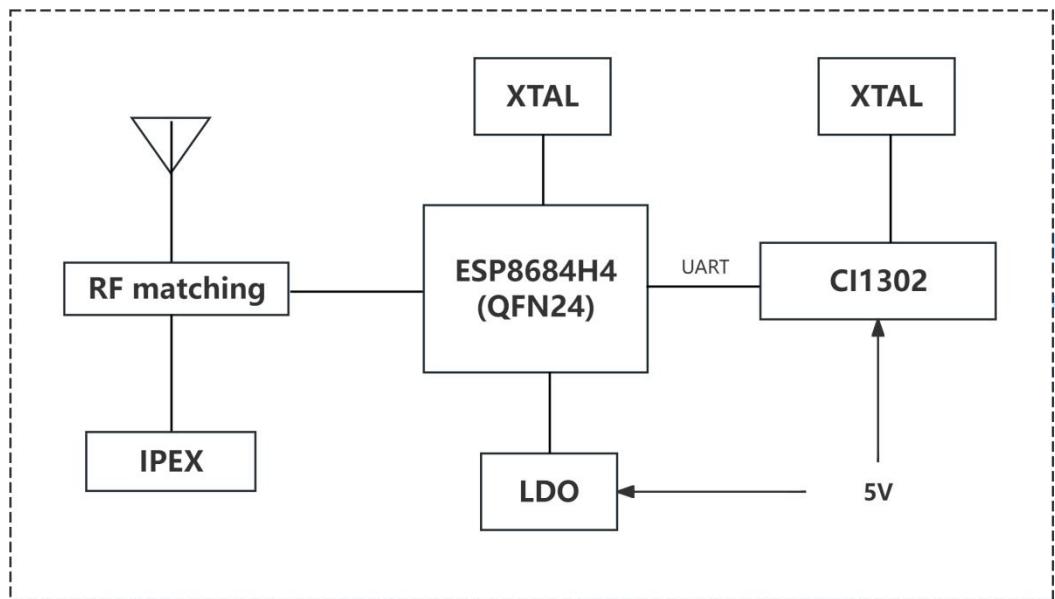



Figure 6: Block diagram of module functions

### 2.2. Hardware parameters

|                      |                           |                          |
|----------------------|---------------------------|--------------------------|
| Controller           | CPU                       | ESP8684H4                |
|                      | kernel (computer science) | Single-core RISC-V 32bit |
|                      | main frequency            | 120 MHz                  |
| Stockpile            | ROM                       | 576 KB                   |
|                      | SRAM                      | 273 KB                   |
|                      | Flash                     | 4 MB                     |
| Peripheral interface | GPIO                      | 9                        |
|                      | SPI                       | 3                        |
|                      | UART                      | 1                        |
|                      | I2C                       | 1                        |
|                      | LED PWM                   | 1                        |



|       |      |       |
|-------|------|-------|
| Other | XTAL | 26MHz |
|-------|------|-------|

### 2.3.Functional parameters

|                  |                        |                                   |
|------------------|------------------------|-----------------------------------|
| <b>Wi-Fi</b>     | Wi-Fi band             | 2.4 GHz                           |
|                  | Security               | WEP/WPA-PSK/WPA2-PSK              |
|                  | Protocols              | IEEE 802.11 ax/b/g/n              |
|                  | Support Mode           | 1T1R                              |
|                  | Data transmission rate | Up to 72.2 Mbps                   |
|                  | Operating mode         | STA/AP/STA+AP                     |
| <b>Bluetooth</b> | Bluetooth band         | 2.4 GHz                           |
|                  | Bluetooth version      | Bluetooth LE 5.0                  |
|                  | Data transmission rate | 125 Kbps, 500 Kbps, 1Mbps, 2 Mbps |
| <b>Others</b>    | Remote OTA             | Supported                         |

### 3. Pin Definitions

#### 3.1. Pin Layout

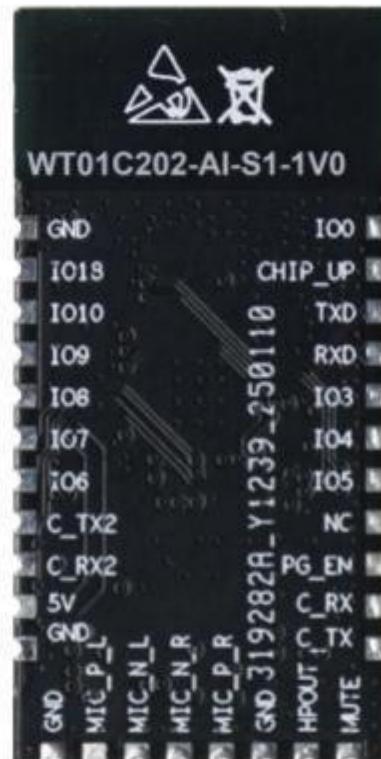



Figure 7: Pin Layout Diagram

#### 3.2. Pin Description

Pin Function Description

| Pin | Name    | Descriptive                                                                                                 |
|-----|---------|-------------------------------------------------------------------------------------------------------------|
| 1   | GPIO0   | GPIO0, ADC1_CH0                                                                                             |
| 2   | CHIP_UP | Enable ESP32-C2 chip (internal 100K pull- up)                                                               |
| 3   | GPIO20  | GPIO20, reuse TXD (ESP32-C2 download serial port, recommended to be reserved by the customer)               |
| 4   | GPIO19  | GPIO19, reuse RXD (ESP32-C2 download serial port, recommended to be reserved by customers)                  |
| 5   | GPIO3   | GPIO3, ADC1_CH3                                                                                             |
| 6   | GPIO4   | GPIO4, TXD (the main communication serial port of the module, connected to customer MCU RXD,3.3V level)     |
| 7   | GPIO5   | GPIO5, RXD (the main communication serial port of the module, connected to the customer MCU TXD,3.3V level) |



continued from previous page

| Pin | Name   | Descriptive                                                                                                          |
|-----|--------|----------------------------------------------------------------------------------------------------------------------|
| 8   | NC     | /                                                                                                                    |
| 9   | PG_EN  | NC, reserved for use. This pin is not connected to the signal and is left floating                                   |
| 10  | CI_RX0 | (For voice download serial port RXD, it is recommended to draw out customer reservation)                             |
| 11  | CI_TX0 | (For voice download serial port TXD, it is recommended to draw out customer reservation)                             |
| 12  | MUTE   | GPIO (CI1302 IO port, used for external audio amplifier switch control of the module)                                |
| 13  | HPOUT  | Audio output (the audio input pin used for the external audio amplifier of the module, see below for details bright) |
| 14  | GND    | Power ground (see design guide for details)                                                                          |
| 15  | MIC_PR | AEC echo cancellation feedback signal access end (see design guide for details)                                      |
| 16  | MIC_NR | NC                                                                                                                   |
| 17  | MIC_NL | Simulated microphone N input (see design guide for details)                                                          |
| 18  | MIC_PL | Simulated microphone P input (see design guide for details)                                                          |
| 19  | GND    | Power ground (see design guide for details)                                                                          |
| 20  | GND    | Power ground                                                                                                         |
| 21  | 5V     | Power supply (main power input of the module, ripple less than 100mV, current 1A)                                    |
| 22  | NC     | /                                                                                                                    |
| 23  | NC     | /                                                                                                                    |
| 24  | GPIO6  | GPIO6,MTCK                                                                                                           |
| 25  | GPIO7  | GPIO7,MTDO                                                                                                           |
| 26  | GPIO8  | GPIO8 (internal 10K pull-up)                                                                                         |
| 27  | GPIO9  | GPIO9 (internal weak pull-up, ESP32-C2 download and use, it is recommended to draw out and reserve for customers)    |
| 28  | GPIO10 | GPIO10 (internal 10K pull-down)                                                                                      |
| 29  | GPIO18 | GPIO18                                                                                                               |
| 30  | GND    | Power ground                                                                                                         |

### 3.3.Startup Item Configuration

#### 3.3.1. Strapping Pins

The WT01C202-AI-S1/S1U module requires some initial configuration parameters each time it is powered up or reset, such as loading the boot mode of the chip. These parameters are controlled by the strapping pin. After reset release, the strapping pin has the same function as the normal IO pin. When the chip is reset, the following startup parameters are controlled by the strapping pin:

- **Chip startup mode** - controlled by GPIO8 and GPIO9
- **ROM Code Log Printing** - Controlled by GPIO8

If the above strapping pin is not connected to any circuit or the connected circuit is in a high impedance state, its default value (i.e., the logic level value) depends on the state of the weak pull-up/pull-down resistor inside the pin at reset.

Strapping Pin Default Configuration

| Strapping Pin | Default configuration | Value |
|---------------|-----------------------|-------|
| GPIO8         | Floating              | -     |
| GPIO9         | pull up               | 1     |

To change the value of a strapping pin, you can connect an external pull-down/pull-up resistor. All strapping pins have latches. When the system is reset, the latches sample and store the values of the corresponding strapping pins, maintaining them until power loss or shutdown. The state of the latches cannot be changed in any other way. Therefore, the values of strapping pins can be read continuously while the chip is operating and can be used as regular IO pins after power loss.

The signal timing of the strapping pin should follow the build-up and hold times shown in the table below and in the figure below.

Timing Parameter Description for Strapping Pin

| Parameters | Clarification                              | Minimum (ms) |
|------------|--------------------------------------------|--------------|
| $t_0$      | CHIP_EN Establishment time before power-up | 0 ms         |
| $t_1$      | CHIP_EN Hold time after power up           | 3 ms         |

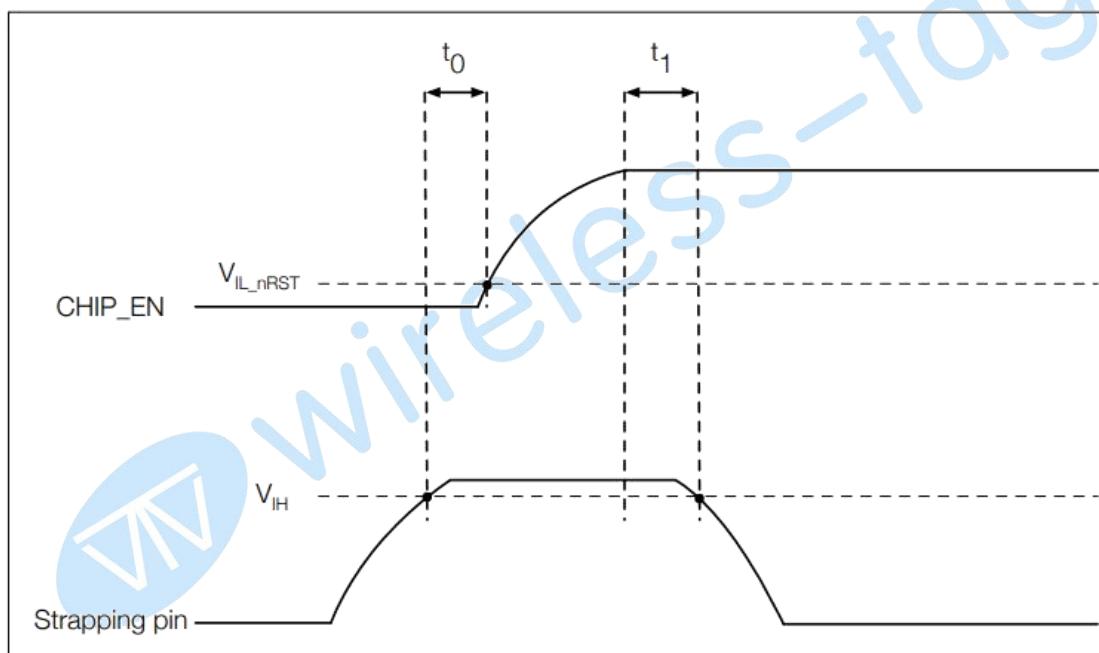



Figure 8: Timing details diagram

### 3.3.2. Chip startup mode control

After reset release, IO8 and IO9 together determine the startup mode. See the table below for details.

| Pin   | Default configuration | SPI Boot Mode   | Download Launch Mode |
|-------|-----------------------|-----------------|----------------------|
| GPIO8 | (Floating)            | Arbitrary value | 1                    |
| GPIO9 | 1 (Pull - up)         | 1               | 0                    |

Controls ROM Code printing during system startup. See the following table for details.

| Pin   | Default configuration | Functionality                                                                                                                                                                                                                                                                                                                                              |
|-------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPIO8 | not have              | <p>The UART_PRINT_CONTROL for eFuse is When 0: Power on normal printing, not controlled by GPIO8.</p> <p>1: If GPIO8 is 0, power-on printing is normal; if GPIO8 is 1, power-on does not print.</p> <p>2: If GPIO8 is 0, power-on does not print; if GPIO8 is 1, power-on prints normally.</p> <p>3: No printing on power-up, not controlled by GPIO8.</p> |

### 3.4. Interface description

#### 3.4.1. Enable interface

##### Module enable foot-CHIP\_UP

The enable pin of the module is pin 2, which connects to the chip CHIP\_PU. Inside the module, there is a 100K pull-up resistor, allowing reset through the enable pin. After power-on, the CHIP\_PU pin defaults to a high level enabling the module. During normal operation of the module, when the CHIP\_PU pin receives a low level, it triggers the module to reset.

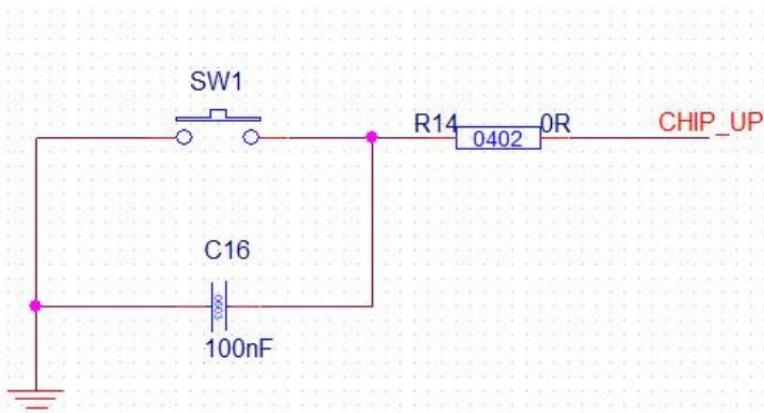



Figure 9 : Button reset reference design

#### 3.4.2. Serial port interface

| Pin name | Pin number | Functional description | Remarks |
|----------|------------|------------------------|---------|
|          |            |                        |         |



|        |   |                                   |                               |
|--------|---|-----------------------------------|-------------------------------|
| GPIO20 | 3 | C2 U0TXD Serial port transmission | Firmware download serial port |
| GPIO19 | 4 | C2 U0RXD Serial port reception    |                               |

The module can achieve data communication and debugging functions via the serial port. Customers can choose to use it according to their needs. It is recommended to reserve a pull-up resistor to prevent insufficient driving capability of the chips serial port communication. It is suggested to connect a 100-ohm current-limiting resistor in series with the RXD and TXD signal lines to prevent pulse currents from damaging the chip.

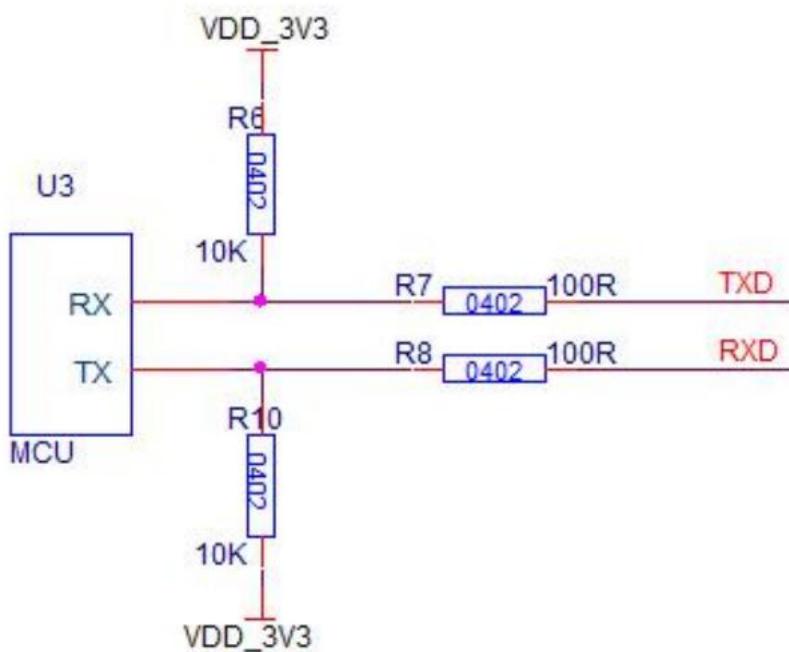



Figure 10 : Communication serial port reference design

**Note: The ESP32-C2 inside the module communicates with 1302 through a serial port, and the interface is as follows**

| Pin name | ESP32-C2 chip Pin number | Functional description                 |
|----------|--------------------------|----------------------------------------|
| GPIO1    | 5                        | ESP32 C2 TXD pin connected to 1302 RXD |
| GPIO2    | 6                        | ESP32 C2 RXD pin connected to 1302 TXD |

**ESP32C2 Download interface description**

| Pin name | Pin number | Functional description                  | Remarks                                                                |
|----------|------------|-----------------------------------------|------------------------------------------------------------------------|
| GPIO20   | 3          | ESP32 C2 U0TXD Serial port transmission | Firmware download                                                      |
| GPIO19   | 4          | ESP32 C2 U0RXD Serial port reception    | Firmware download                                                      |
| GPIO9    | 27         | Serial port download Boot               | Before power on, pull down this pin serial port to enter download mode |

**CI1302 Download interface description**

| Pin name | Pin number | Functional description                        | Remarks               |
|----------|------------|-----------------------------------------------|-----------------------|
| CI_RX0   | 10         | CI1302 UART0_RX serial port reception         | Firmware download     |
| CI_TX0   | 11         | CI1302 UART0 TX serial port transmission      | Firmware download     |
| PG_EN    | 9          | Set the startup mode (default pull-up inside) | See below for details |

When upgrading the module audio firmware online, it is necessary to determine whether to proceed based on the power level status of the PG\_EN when it is powered on. The upgrade starts when the power level is high. The PG\_EN has an internal default pull-up. When the power level is judged to be high upon startup, the chip detects an upgrade signal on the UART0 and automatically enters upgrade mode. At this point, you can use the accompanying upgrade tool to program the Nor Flash inside the chip. If no upgrade signal is detected on the UART0, it will enter normal operation mode.



## 4. Electrical Characteristics

### 4.1. Absolute maximum limit value

Exceeding the absolute maximum ratings may result in permanent damage to the device. This is an emphasized rating only and does not address the functional operation of the device under these or other conditions beyond those indicated in these specifications. Prolonged exposure to absolute maximum rating conditions may affect module reliability.

### 4.2. Recommended working conditions

| Symbol             | Parameters                                | Minimum value | Typical value | Maximum values | Unit |
|--------------------|-------------------------------------------|---------------|---------------|----------------|------|
| A5V                | Power pin voltage                         | 5.0           | 5.0           | 5.5            | V    |
| I <sub>VDD</sub>   | Supply current from external power supply | 1.0           | -             | -              | A    |
| T <sub>A</sub>     | Operating Temperature                     | -40           | -             | 85             | °C   |
| V <sub>IH</sub>    | Enter the high voltage range              | 2.8           | -             | 3.3            | V    |
| V <sub>IL</sub>    | Enter the low voltage range               | 0             | -             | 0.6            | V    |
| T <sub>STORE</sub> | Storage temperature                       | -40           | -             | 85             | °C   |

### 4.3. Recommended working conditions

The current consumption measurements are taken with a 5 V supply at 25 °C ambient temperature.

TX current consumption is rated at a 100% duty cycle.

RX current consumption is rated when the peripherals are disabled and the CPU idle.

#### 4.3.1. WIFI power consumption

Current Consumption



| WIFI               | Work Mode | Description                  | Peak (mA) |
|--------------------|-----------|------------------------------|-----------|
| Active(RF Working) | TX        | 802.11b, 1 Mbps, @22 dBm     | 435       |
|                    |           | 802.11g, 54 Mbps, @20 dBm    | 390       |
|                    |           | 802.11n, HT20, MCS7, @19 dBm | 367       |
|                    | RX        | 802.11b/g/n, HT20            | 95        |

#### 4.3.2. Bluetooth(LE) power consumption

| Current Consumption |           |                  |           |
|---------------------|-----------|------------------|-----------|
| BLE                 | Work Mode | Description      | Peak (mA) |
| Active(射频工作)        | TX        | 低功耗蓝牙@20.0dBm    | 443       |
|                     |           | 低功耗蓝牙@9.0dBm     | 253       |
|                     |           | 低功耗蓝牙@0dBm       | 189       |
|                     |           | 低功耗蓝牙@ - 15.0dBm | 125       |
|                     | RX        | 低功耗蓝牙            | 94        |



## 5. Module Schematic

N#A



## 6. Module Size and Packaging

Note: The units of the following modules are in millimeters, with a tolerance of  $\pm 0.2$  mm.

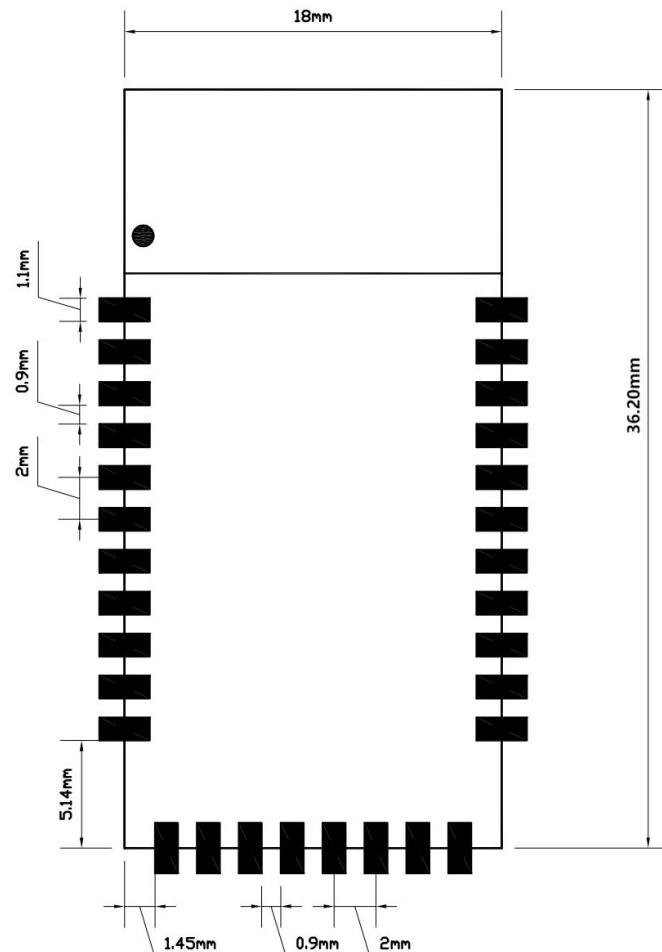



Figure 11: Top view dimensional drawing of the module

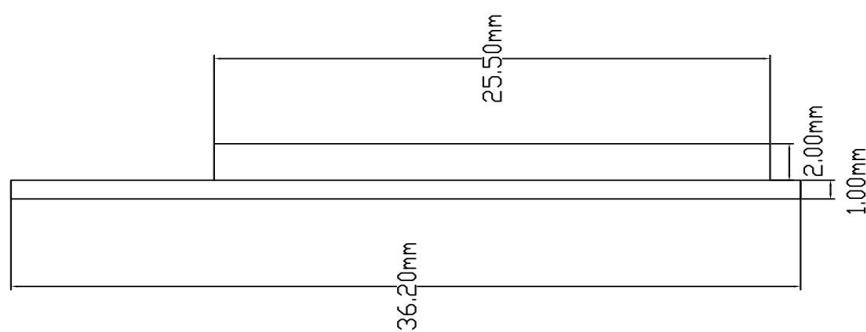



Figure 12: Side view dimensional view of the module

## 7. Storage Condition

| Prerequisite         | Parameters                                                                       |
|----------------------|----------------------------------------------------------------------------------|
| Storage condition    | Non-condensing atmosphere $< 40^{\circ}\text{C} / 90\% \text{RH}$ in sealed MBBs |
| Conditions of use    | 168 hours at $25 \pm 5^{\circ}\text{C}$ , 60 % RH.                               |
| Moisture sensitivity | 3 levels                                                                         |

## 8. Reflow Soldering Curve

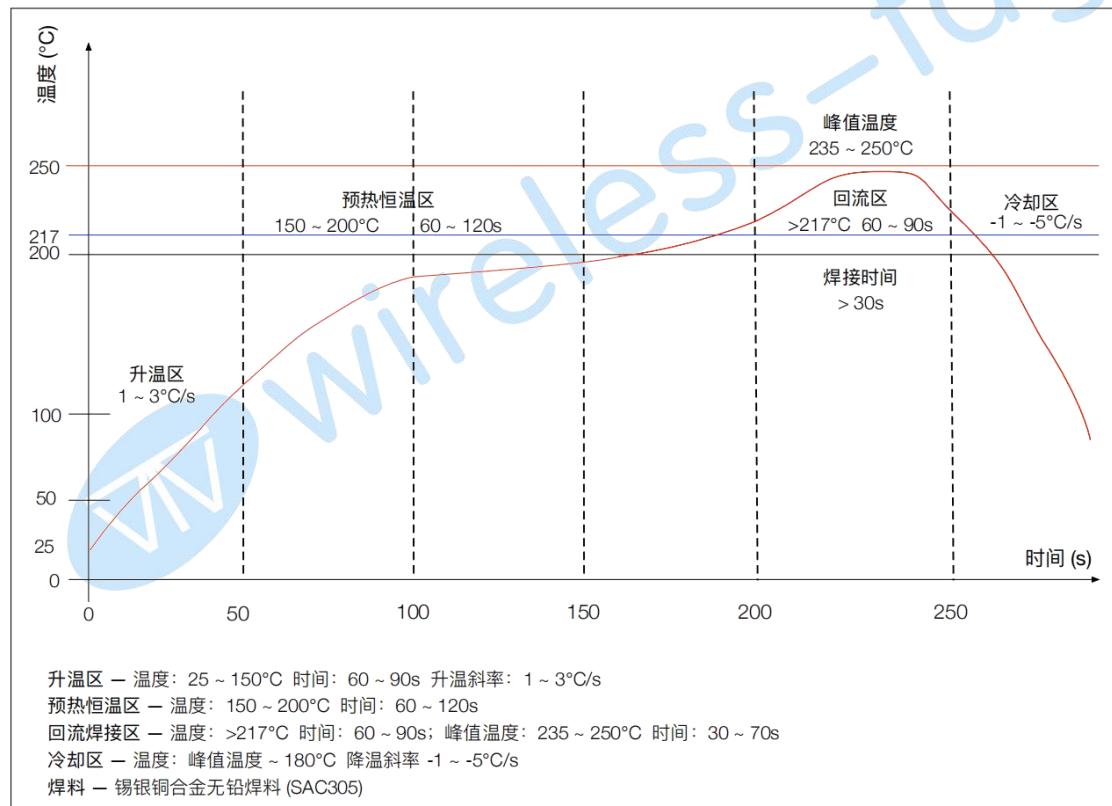



Figure 13: Reflow Soldering Temperature Curve

## 9. Contact Us

Official website: [www.wireless-tag.com](http://www.wireless-tag.com)

Contact Email: [gtm@wireless-tag.com](mailto:gtm@wireless-tag.com)

Technical support e-mail: [technical@wireless-tag.com](mailto:technical@wireless-tag.com)